AREA AND VOLUME

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

1.

3	648	M2 a complete method, eg 12.5 × 1000 ÷ 19.3	
		[M1 for using volume = mass/density, eg 12500 ÷ 19.3 (condone inconsistent units or incorconversions) may be implied by digits 647 or 648]	
		A1 for answer in range 647 to 648	

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

2.

(6	147	P1	starts process, eg uses x and $x + 7$
			P1	starts to work with at least 6 correct sides, may be on the diagram or in an expression
			P1	(dep on previous P1) gives a correct expression for the perimeter, eg $x+x+7+x+7+x+7+x+7+x+7+x+7$ or adds at least 6 correct sides and equates to 70
			A1	for width = 3.5 oe and length = 10.5 oe
			B1	ft (dep P2) for correct area for their x

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

3.

21	8600	P1	for process to find the length of the rectangle, e.g. $24 \times 4 (= 96)$
		P1	for process to find the perpendicular height of an equilateral triangle of
			side (24×2) cm, e.g. $48\sin 60 (= 41.5(69))$ or $\sqrt{48^2 - 24^2} (= 24\sqrt{3} \text{ oe})$
		P1	for complete process to find the width of rectangle,
			e.g. "41.5(69)" + 24 + 24 (= 89.5(69))
		A1	for answer in the range 8592 to 8602

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

4.

7		complete chain of reasoning	C1 C1	starts chain of reasoning eg finds area of large square and area of triangle or use of Pythagoras for $(x+y)^2 - 4 \times (x \times y \div 2)$ oe or $\sqrt{x^2 + y^2} \times \sqrt{x^2 + y^2}$ complete chain of reasoning with correct algebra
---	--	--------------------------------	----------	--

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

4		48	P1	begins to work with rectangle dimensions eg $l+w=7$ or $2\times l+w$ (=11)
			C1	shows a result for a dimension eg using <i>l</i> =4 or <i>w</i> =3
			P1	begins process of finding total area eg 4 × "3" × "4"
			A1	cao

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

6.

5	expla	anation M1	works with volume eg 240000	begins working back eg 70÷2.50
		M1 M1 M1 C1	uses conversion 1 litre = 1000 cm^3 uses $8000 \text{ eg vol} \div 8000 \text{ (=}30)$ uses "30" eg "30" × 2.50 for explanation and 75 stated	(=28) uses conversion 1 litre = 1000 cm ³ uses 8000 eg "28"× 8000 (=224000) works with vol. eg 240000 for explanation with 240000 and 224000

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

7.

18	75π	P1 250 1 4 3
		starts process by using $\frac{250}{3}\pi$ and $\frac{1}{2} \times \frac{4}{3}\pi r^3$ to find radius
		P1 starts process using $\frac{1}{2}$ curved surface area eg $(4 \times \pi \times 5^{2}) \div 2$
		P1 complete process shown eg $(4 \times \pi \times "5"^2) \div 2 + (\pi \times "5"^2)$
		A1 for 75π
		A1 for $/3\pi$

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier

8.

	ı	1		
12		430	P1 for appropriate use of Pythagoras	
			P1 for setting up an equation equivalent to $x^2 = 15^2 - 5^2 - 7^2$ or better eg $\sqrt{151}$	
			P1 for finding the volume using their " $\sqrt{15^2 - 5^2 - 7^2}$ "	
			A1 430 to 430.1	
1		1		

Pearson Edexcel - Sample Paper 1 - (Non-Calculator) Higher Tier

9.

13	6.4	P1	Start to process eg. find scale factor (0.4) or $\frac{AE}{4} = \frac{4}{10}$
		P1	Complete process to find area
		A1	

Pearson Edexcel - Sample Paper 1 - (Non-Calculator) Higher Tier

18	Given result	For length scale factor eg $\sqrt{\frac{4}{9}}$ or 120 : 405
		M1 $\left(\sqrt{\frac{4}{9}}\right)^3 \times 405 \text{ or } 2^3: 3^3 \text{ (from 120: 405)}$
		A1 120 from correct arithmetic or conclusion relating 2 ³ : 3 ³ with 2 ² : 3 ² with correct working

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

11.

9	J	203	P1	translate into algebra for rectangle: $4x+4x+3x+4+3x+4$ (=14x+8) or for trapezium: $5x+5x+x-3+7x-3$ (=18x-6)
			P1	equating: eg 18x-6=14x+8 (4x=14)
			A1	solving for x : $x=14/4 = 3.5$ oe
			P1	process to find area: "3.5" \times 3+4 (ft) or "3.5" \times 4 ft
			A1	cao

Pearson Edexcel - Sample Paper 3 - (Calculator) Higher Tier

12.

16	$AC^{2} = 20^{2} + 20^{2} = 800$ $AX^{2} = 10^{2} + 10^{2} = 200$ $\sqrt{200} \times \tan 55 = VX (= 20.19)$ $VM^{2} = \sqrt{"20.19"^{2} + 10^{2}} (= 22.54)$ $4 \times \frac{1}{2} \times "22.54" \times 20 + 20^{2}$	1300	Let X be centre of base, M be midpoint of AB P1 process to find AC or AX P1 process to find VX or VA P1 process to find height of sloping face or angle of sloping face. P1 process to find surface area of one triangular face. A1 For 1300 – 1302

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier

13.

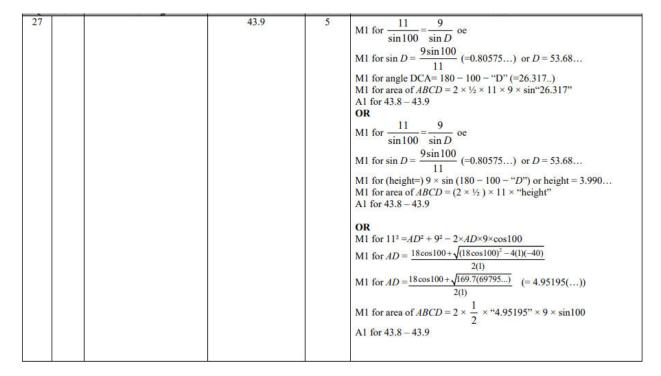
*10	Has enough (with evidence)	5	M1 for splitting the shape (or showing recognition of the "absent" triangles) and using a method to find the area of one shape M1 for a complete method to find the total area, $(= 9 \text{ m}^2)$ M1 (dep on M1) for a method to find the number of packs required from their total area, eg. "9" ÷ 2 = 4.5 rounded up to 5 M1 for a method to find 75% of 24.80 or 75% of the cost of their total number of packs, eg. 24.80 × "5" × $\frac{75}{100}$ (= 93) or 24.80 × $\frac{75}{100}$ (= 18.6) C1 for a conclusion supported by fully correct answers, eg. showing 9 (m²), 5 (packs) and 93 or 7 (from $100-93$) OR
			eg. 100 ÷ "18.60" = 5.3 truncated to 5 or 10 (m²) M1 for finding area of one relevant shape or showing how one pack (2 m²) can fit in the diagram M1 (dep on previous M1) for complete method to show that 5 packs can cover the floor C1 for a conclusion supported by fully correct answers, showing the capacity (10) greater than total area (9)

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

23		22.5	3	M1 for $\frac{1}{2} \times 7 \times 5 \times \sin 40$ or $\frac{1}{2} \times 7 \times 5 \times \sin(180 - 40)$
				M1 (dep M1) for doubling the area of the triangle A1 for 22.4 – 22.5
				OR
				M1 for complete method to find height of parallelogram, eg 5 sin 40° M1 (dep M1) for complete method to find the area of the parallelogram, eg $7\times5 \sin 40^\circ$ A1 for $22.4-22.5$

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

15.


7		9	4	M1 for method to find area of one rectangle,
				eg 15 × 8 (=120) or 15 × 11 (=165)
				M1 (dep) for subtracting from/by given area,
				eg (138 – "120") (=18) or "165" – 138 (=27)
				M1 for final step from complete method shown,
				eg 15 – "18"÷ 3 or "27" ÷ 3
				A1 cao
				OR
				M1 for a correct expression for the area of one rectangle,
				eg $(8+3) \times (15-x)$ or $8 \times x$
				M1 (dep) for a correct equation
				$eg(8+3) \times (15-x) + 8 \times x = 138$
				M1 for correct method to isolate x, eg $3x = 27$
				A1 cao

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

16.

M1 for $\frac{1}{3} \times \pi \times 4^2 \times 10$ oe (= 167.4 – 167.7) A1 for 301 – 302 (or 96π or $\frac{288}{3}\pi$)		
---	--	--

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

Pearson Edexcel - Wednesday 6 November 2013 - Paper 1 (Non-Calculator) Higher Tier

18.

3		120 cm ³	M1 for $\frac{1}{2} \times 3 \times 4$ M1 (dep) for ' $\frac{1}{2} \times 3 \times 4$ ' × 20
			A1 for 120 B1 (indep) for cm ³

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

19.

1		40.5	3	M1 for 1.5×6 or 1.5 ×1.5
				M1 for adding area of 5 or 6 faces provided at least 3 are the
				correct area
				Al cao
				NB: anything that leads to a volume calculation 0 marks.

Pearson Edexcel - Thursday 28 February 2013 - Paper 1 (Non-Calculator) Higher Tier

23		75π	M1 for $(4 \times \pi \times 5^2) \div 2$ oe M1 for $\pi \times 5^2$ oe A1 for 75π accept 235.5 Condone the use of $\pi = 3.14$

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

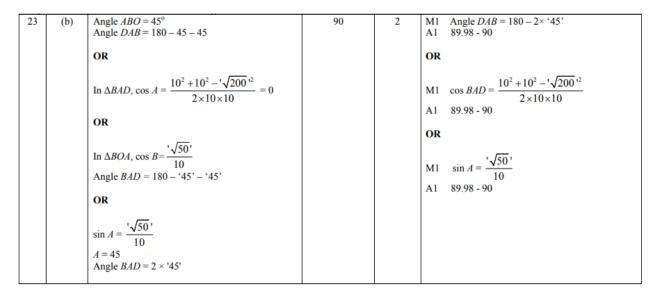
21.

15	(a)	$\frac{1}{2}$ × (4 + 12) × 10	80	2	M1 for a fully correct method for area of <i>QRST</i> A1 cao
	(b)	For example $\frac{PT+10}{PT} = \frac{12}{4} = 3$ PT+10 = 3PT 2PT = 10	5	3	M1 for a correct scale factor or ratio using two corresponding sides from two similar triangles or two sides within the same triangle (may be seen within an equation) eg. $\frac{12}{4}$ oe or $4:12$ oe or $\frac{PT}{4}$ or $\frac{PS}{12}$ or $\frac{12}{12-4}$ etc. M1 for a correct equation with PT or PS as the only variable or complete correct method using scale factor

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

22.

22		$\frac{1}{3} \times \pi \times 15^2 \times 40$ $-\frac{1}{3} \times \pi \times 7.5^2 \times 20$	8250	4	B1 for 15cm as diameter or 7.5 cm as radius of smaller cone (may be marked on diagram or used in a formula) M1 for a numerical expression for the volume of one cone eg. $\frac{1}{3} \times \pi \times 15^2 \times 40$ (=9424) or $\frac{1}{3} \times \pi \times 7.5^2 \times 20$ (=1178) M1 for $\frac{1}{3} \times \pi \times 15^2 \times 40$ oe $-\frac{1}{3} \times \pi \times 7.5^2 \times 20$ oe A1 for answer in the range 8240 – 8250 OR B1 for 2³ M1 for a numerical expression for the volume of the large cone eg. $\frac{1}{3} \times \pi \times 15^2 \times 40$ (=9424) M1 volume of frustrum = $\frac{7}{8} \times \frac{1}{3} \times \pi \times 15^2 \times 40$ oe A1 for answer in the range 8240 – 8250
----	--	---	------	---	---


Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

23.

25	(a)	640	2	M1 for $80 \times \left(\frac{8}{4}\right)^3$ or $80 \div \left(\frac{4}{8}\right)^3$ A1 cao
	(b)	40	2	M1 for $160 \div \left(\frac{8}{4}\right)^2$ or $160 \times \left(\frac{4}{8}\right)^2$ or ft their scale factor from
				(a) Al cao

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier

23	(a)	Let O be the centre of the base. $OB^2 + OC^2 = 10^2$; $OB^2 = 50$ $AO^2 = AB^2 - OB^2 = 50$ Vol = $\frac{1}{3} \times 10^2 \times \sqrt{50}$ OR Let M be the midpt of side BC and let O be the centre of the base. $AM^2 + MC^2 = 10^2$; $AM^2 = 75$ $AO^2 = AM^2 - MO^2 = 50$ Vol = $\frac{1}{3} \times 10^2 \times \sqrt{50}$	236	4	M1 correct method to start to find BD or BO using triangle OBC or triangle BCD (oe) Eg. $OB^2 + OC^2 = 10^2$ or $BO^2 = 50$ or $BO = \sqrt{50}$ (=7.07) or $BO = \frac{\sqrt{200}}{2}$ or $10^2 + 10^2 = BD^2$ or $BD^2 = 200$ or $BD = \sqrt{200}$ (=14.1) M1 (dep) correct method to find height of pyramid using triangle AOB Eg. $AO^2 = 10^2 - '\sqrt{50}'^2$ or $AO^2 = 50$ or $AO = \sqrt{50}$ (=7.07) M1 (indep) $\frac{1}{3} \times 10^2 \times '\sqrt{50}'$ (but not $\frac{1}{3} \times 10^2 \times 10$) A1 235 - 236 OR M1 correct method to start to find height of a face using triangle AMC (oe) Eg. $AM^2 + 5^2 = 10^2$ or $AM^2 = 75$ or $AM = \sqrt{75}$ (=8.66) M1 (dep) correct method to find height of pyramid using triangle AOM Eg. $AO^2 = '\sqrt{75}'^2 - 5^2$ or $AO^2 = 50$ or $AO = \sqrt{50}$ (=7.07) M1 (indep) $\frac{1}{3} \times 10^2 \times '\sqrt{50}'$ (but not $\frac{1}{3} \times 10^2 \times 10$) A1 235 - 236
23 cont.	(a)				OR M1 for $\sin 45 = \frac{x}{10}$ or $\cos 45 = \frac{x}{10}$ M1 for $h = 10 \times \sin 45$ or $h = 10 \times \cos 45$ (=7.07) M1 (indep) $\frac{1}{3} \times 10^2 \times '7.07'$ (but not $\frac{1}{3} \times 10^2 \times 10$) A1 235 – 236

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

25.

25	Vol cylinder = $\pi \times (2x)^2 \times 9x$ = $36\pi x^3$	3 <i>x</i>	3	M1 for sub. into πr^2 h eg. $\pi \times (2x)^2 \times 9x$ oe M1 for $\pi \times (2x)^2 \times 9x = \frac{4}{3}\pi r^3$ oe
	$36\pi x^3 = \frac{4}{3}\pi r^3$ $r^3 = 27x^3$			Al oe eg. $\sqrt[3]{\frac{36x^3}{\frac{4}{3}}}$
				NB : For both method marks condone missing brackets around the $2x$

Pearson Edexcel - Monday 5 March 2012 - Paper 4 (Calculator) Higher Tier

26.

	1	l .	I.		1
13		½ (6 + 12) × 8	72	2	M1 for $\frac{1}{2} \times (6 + 12) \times 8$ or complete method to find the
					area eg 8 × 6 + ½ × 8 × "12 – 6"
					or $12 \times 8 - \frac{1}{2} \times 8 \times \text{``}12 - 6\text{''}$ or $48 + 24$ or $96 - 24$
					A1 cao

Pearson Edexcel - Monday 14 November 2011 - Paper 4 (Calculator) Higher Tier

27.

		1	1
24	$3 \times \pi \times 8^2$	603	M1 for $\frac{1}{2} \times 4 \times \pi \times 8^2$ oe (=402(.12)) M1 (dep) for '402' + $\pi \times 8^2$ or 192π A1 for $603 - 603.23$

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

9	$\frac{1}{2}(8 \times 15) \times 2 + (17 \times 10) + (15 \times 10) + (8 \times 10) = 60 + 60 + 170 + 150 + 80$	520 cm ²	4	M1 a correct expression for area of one face M1 for five area expressions added (at least three correct) A1 cao NB: if volume calculated then no marks B1 (indep) for cm ²
				(" ")

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

29.

|--|

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

30.

19	(a)	15 ÷ 10 8 × 1.5	12	2	M1 for 15 ÷ 10 or 1.5 or $\frac{3}{2}$ or $\frac{2}{3}$
	(b)	½ × (8 +"a") × 5	50	2	NB: ft from (a) provided 'DC' > 8
					M1 for $\frac{(8 + "a") \times 5}{2}$ A1 ft
					or M1 for (8× 5) + ½("DC" - 8) × 5 A1 ft
					or
					M1 for ½ × "DC" × 15 – ½ × 8 × 10 A1 ft
					M1 for ½ × 8 × 10 × "1.52" – ½ × 8 × 10 A1 ft

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

20	(a)		$a^2(c+b)$ 4abc	2	B1 for a ² (c + b) B1 for 4abc [-1 for each additional incorrect answer, up to a minimum of 0]
	(b)	8 × 100 × 100 × 100	8 000 000 or 8 x 10 ⁶ or 8 million	2	M1 for sight of 10 ⁶ oe or 100×100×100 or 200×200×200 A1 for 8 000 000 or 8 x 10 ⁶

OCR GSCE - Tuesday 3 November 2020 - Paper 4 (Calculator) Higher Tier

32.

6		482	4	M1 for 6×8×15 or 720	M3 implied by 80.3[3] or 481.99
				M1 for ³ √ <i>their</i> 720 or 8.96	M2 implied by 8.96
				M1 for [6 ×] $(\sqrt[3]{their720})^2$	i.e [6 ×] (their 8.96) ²

OCR GSCE - Thursday 5 November 2020 - Paper 5 (Non-Calculator) Higher Tier

33.

20	144 with correct working	7	B2 for [AD =] 10, [AB =] 24, [DC =] 12 and [BC =] 10 or M1 for 56 + (5 + 12 + 6 + 5) oe AND	"Correct working" requires evidence of at least B2 AND M2 AND M1 Could be written on diagram
			M2 for $h^2 + 6^2 = 10^2$ or ref to 3, 4, 5 or 6, 8, 10 triangle or B1FT for deducing perpendicular from D to AB is 6 cm from A (or B)	For M2 FT their BC and $\frac{1}{2}$ (AB – DC) used condone $h^2 + 3^2 = 5^2$ (using ratio values) FT $\frac{1}{2}$ (their AB – their DC)
			A1 for height = 8 AND M1 for $\frac{8}{2}(12+24)$ or better If 0 scored SC2 for answer 144 with no working or SC1 for height = 8 with no working	FT their AB, CD and h provided h is not their AD or 5

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

14	1250 nfww	5	M4 for [6x ² =] 2 × 625	Special cases: Starting from $3x^2 = 25$ oe soi
			or B4 for final answer 1244 to 1250.05	M1M0 for $3x^2 = 25$
			OR	A1 for $[x =]\sqrt{\frac{25}{3}}$ or $\frac{5\sqrt{3}}{3}$ oe or 2.88
			M1 for 3x ² oe or 625	to 2.89 soi (2.88 to 2.89 seen implies M1M0A1)
			and	M1 for $6 \times their x^2$ soi by 50
			M1 for $3x^2 = 625$ oe	
			and	Starting from $2x^2 = 625$ oe soi M1M0 for $2x^2 = 625$
			A1 for $[x =]\sqrt{\frac{625}{3}}$ or $\frac{25\sqrt{3}}{3}$ oe or 14.4 to 14.434 soi	A1 for [x =] $\sqrt{\frac{625}{2}}$ or $\frac{25\sqrt{2}}{2}$ or 17.6 to
			(14.4 to 14.434 seen implies M1M1A1)	17.7 soi (17.6 to 17.7 seen implies M1M0A1)
			and	M1 for 6 × their x²
			M1 for 6 × their x²	(1875 as final answer implies M1M0A1M1A0)
			If 0 scored, SC1 for starting from $x^2 = 25$ and final answer 150 or starting from $2x^2 = 25$ and final answer 75	Starting from $x^2 = 625$ oe soi M1M0 for $x^2 = 625$ A0 (equation has been simplified and it is a more substantial error) M1 for $6 \times their x^2$ (3750 as final answer implies M1M0A0M1A0)

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

35.

18	8.74[] nfww	4	M3 for [r =] $\sqrt[3]{\frac{2100}{\pi}}$ or M2 for $\pi r^3 = 2100$ oe M1 for $\frac{1}{3} \pi r^2 (3r)$ oe Alternative method using h M3 for $[h =] \sqrt[3]{\frac{56700}{\pi}}$ soi by 26.2[3] or	Accept answer of 8.7 after M3 May be done in stages eg M3 for $\sqrt[3]{668. ()}$ eg. M2 for $3\pi r^3 = 6300$ or $\frac{1}{3}\pi r^2(3r) = 2100$ etc eg. M1 for πr^3
			M1 for $\frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h$ oe	eg. M1 for $\frac{1}{27}\pi h^3$

OCR GSCE – Wednesday 8 November 2017 – Paper 6 (Calculator) Higher Tier

15		85π or 267[.0]	3	M2 for $\pi \times 5 \times 12 + \pi \times 5^2$ oe
				OR
				B1 for 60π or 25π or $188[.4]$ or 188.5 or $78[.5]$ or $\pi \times 5^2$

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

37.

2	(a)	4900π	2 1 AO1.2 1 AO1.3a	M1 for $\pi \times 70^2$ may be implied by 15393.8	
	(b)	3.5	2 2 AO1.3a	M1 for $\frac{17150\pi}{\text{their} '4900\pi'}$	FT from (a), provided (a) is a multiple of π

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

38.

13		11 or better	4 2 AO1.3b 1 AO3.1b 1 AO3.2	M1 for $r = \sqrt[3]{\frac{3v}{4\pi}}$ soi A1 for r (Earth) = 6365 km	Alternate method: M1 for $\frac{1.43 \times 10^{15}}{1.08 \times 10^{12}}$
				or <i>r</i> (Jupiter) = 69890 km M1 for $\frac{their'69890'}{their'6365'}$	A1 for 1324[.074] M1 for ₹1324

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

39.

7		8 cm	3	M1 for listing square numbers and	
		10 cm	ı	finding differences	
			1 AO3.1b 1 AO3.2	M1 for square rooting <i>their</i> pair of square numbers	

OCR GSCE – Sample Papers – Paper 6 (Calculator) Higher Tier

16	(a)	(i)	70.71[0678]	3 1 AO1.1 2 AO3.1a	M2 for $8 \times \frac{1}{2} \times 5 \times 5 \times \sin 45$ or M1 for $\frac{1}{2} \times 5 \times 5 \times \sin 45$	
		(ii)	85 – 85.4	5 2 AO1.3b 3 AO3.1b	M4 for $(2 \times 5 \cos 22.5)^2$ or $(2 \times 5 \sin 67.5)^2$ or M3 for $2 \times 5 \cos 22.5$ or $2 \times 5 \sin 67.5$ or M2 for $5 \cos 22.5$ or $5 \sin 67.5$ or M1 for $\cos 22.5 = \frac{x}{5}$ or $\sin 67.5 = \frac{x}{5}$	9.238 4.619
	(b)		64:1 or 1: 1 64	2 2 AO3.2	M1 for making the link to, and using, enlargement eg $(\frac{1}{8})^2$ or 8^2 soi	

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

41.

	Alternative method 1				
	$200 - 2 \times 5 \times 5$ or $200 - 50$ or 150 or $4 \times 5 \times y$ or $20y$	M1	oe eg $5y + 5y + 5y + 5y$ implied by 37.5 or answe	r 937.5	
0(4)	$4 \times 5 \times y = 200 - 2 \times 5 \times 5$ or $4 \times 5 \times y = 200 - 50$ or $4 \times 5 \times y = 150$ or $150 \div 4 \div 5$ or $150 \div 20$ or 7.5	M1dep	oe eg 20 <i>y</i> = 150		
9(a)	187.5	A1	oe		
	Alternative method 2				
	200 – 2 × 5 × 5 or 200 – 50 or 150	M1	oe implied by 37.5 or answe	r 937.5	
	150 ÷ 4 × 5 or 37.5 × 5	M1dep	oe		
	187.5	A1	oe		
	Additional Guidance				
	Embedded 7.5 eg 4 × 5 × 7.5 = 15)		M1M1	
	It is smaller than the answer to part (a)	B1			
9(b)	Additional Guidance				

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier 42.

	2(12-x) or $24-2xor12(x+2)$ or $12x+24or12x+2x$ or $14xor2x+x^2+x(12-x)or 2x+x^2+12x-x^2$	M1	oe correct area of small rec rectangle or unshaded s may be seen on diagran	ection
17	$\frac{12(x+2)}{4} = 2(12-x)$ or $12x + 2x = 6(12-x)$	M1dep	oe equation eg $3(x+2) = 2(12-x)$ 3x+6=24-2x 12(x+2)=8(12-x) 12x+24=96-8x	
	3x + 2x = 24 - 6 or 14x + 6x = 72	M1dep	oe equation with bracket terms collected eg $5x = 18$ 12x + 8x = 96 - 24 20x = 72	ts expanded and
	$\frac{18}{5}$ or $3\frac{3}{5}$ or 3.6	A1	oe	
	Add			
	3x + 6	M1		
	Trial and improvement with $x = 3.6$	chosen		M1M1M1A1
	Trial and improvement without $x = 3$.	.6 chosen	1	M0M0M0A0

AQA GSCE – Thursday 6 June 2019 – Paper 2 (Calculator) Higher Tier 43.

	Alternative method 1					
	8 ² or 64 and 17 ² or 289	M1				
	$\sqrt{17^2 - 8^2}$ or $\sqrt{225}$ or 15	M1dep	oe implies M2 may be seen on diagram			
	8 × 3 × their 15 or 24 × their 15	M1dep	dep on M2 oe eg (8 + 16) × their 15 or 0.5 × 8 × their 15 × 6			
	360	A1	SC2 [448.8, 456]			
	Alternative method 2	Alternative method 2				
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram			
7	17 × sin their [61.9, 62] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 × tan their [61.9, 62]			
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6			
	360	A1	SC2 [448.8, 456]			
	Alternative method 3					
	$\sin A = \frac{8}{17}$ or $A = [28, 28.1]$	M1	may be seen on diagram			
	17 × cos their [28, 28.1] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 ÷ tan their [28, 28.1]			
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6			
	360	A1	SC2 [448.8, 456]			

Alternative method and Additional Guidance continued on the next page

	Alternative method 4				
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram		
	1/2 × 8 × 17 × sin their [61.9, 62] or [59.9, 60.1]	M1dep	oe		
	6 × their [59.9, 60.1] or [357.6, 362.4]	M1dep	oe		
	360	A1	SC2 [448.8, 456]		
7 cont	Ade				
	15 without a contradictory value for A method 1, even if not subsequently u	M1M1			
	$\sqrt{17^2 + 8^2}$	M1M0			
	3 rd M1 is for the total area and may b using a trapezium + a triangle				
	3 rd M1 is for the total area so further to eg 360 seen followed by 360 – 60, ar	M1M1M0A0			
	May use sine rule or cosine rule but r second M1 in Alt 2 or 3				

AQA GSCE – Thursday 6 June 2019 – Paper 2 (Calculator) Higher Tier 44.

	$\tan 64 = \frac{h}{4}$ or $\tan 26 = \frac{4}{h}$ or $\frac{h}{\sin 64} = \frac{4}{\sin 26}$	M1	oe eg tan $64 = \frac{h}{15 - 11}$ or tan $(90 - 64) = \frac{15 - 1}{h}$ or $h^2 + 4^2 = \left(\frac{4}{\cos 64}\right)^2$ any letter	
19	4 tan 64 or $\frac{4}{\tan 26}$ or $\frac{4}{\sin 26} \times \sin 64$ or 8.2 $\frac{1}{2} \times (15 + 11) \times \text{their 8.2}$	M1dep	oe eg $\sqrt{\left(\frac{4}{\cos 64}\right)^2 - 4}$ implies M2 may be seen on diagran	n
	or $\frac{1}{2} \times 4 \times \text{ their } 8.2 + 11 \times \text{ their } 8.2$	M1dep	eg 15 × their 8.2 – $\frac{1}{2}$ dep on M2	× 4 × their 8.2
	[106.6, 106.62]	A1	accept 107 with working	seen
	Ad	ditional (Guidance	
	3rd M1 is for a total area and may be		d as	
	a trapezium or a rectangle + a triang			
	or a rectangle – a triangle or a trian			
	8.2 seen scores M2 even if not sub			
	Further work after 106.6 eg 106.6 + 16.4			M1M1M0A0

AQA GSCE – Thursday 6 June 2019 – Paper 2 (Calculator) Higher Tier 45.

	$πr × 2r$ or $πr × 3r$ or $2πr^2$ or $3πr^2$ or $5πr^2$	M1	oe implied by a correct equ	ation for first A1
	$2\pi r^2 + 3\pi r^2 = 57.8\pi$ or $5\pi r^2 = 57.8\pi$ or $2\pi r^2 = 57.8\pi + 5 \times 2$ or $3\pi r^2 = 57.8\pi + 5 \times 3$ or $\sqrt{11.56}$	A1	oe eg $\pi r \times 2r + \pi r \times 3$ or $5r^2 = 57.8$ or $r^2 = 12$ or $2r^2 = 23.12$ or $3r^2 = 34.68$	
	3.4 or $\frac{17}{5}$ or $3\frac{2}{5}$	A1		
	Ade			
21	11.56 not in a square root or a correct	MO		
	Adding the area of a circle (or 2 circle M1A0A0 eg $3\pi r^2 + \pi r^2 = 57.8\pi$ Adding further incorrect terms scores	M1A0A0		
	T & I scores M1A1A1 if answer 3.4, o			
	Allow $\pi r^2 5$ for $5\pi r^2$ etc throughout			
	Answer ± 3.4	M1A1A0		
	$5\pi r^2 \times \pi r^2$ or $3\pi r^2 \times \pi r l$ etc			MO
	Allow π to be replaced by [3.14, 3.142]			
	Answer 3 is incorrect unless 3.4 seen in working lines			

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier 46.

	$\sin 24 = \frac{h}{20}$	M1	oe $\cos 66 = \frac{h}{20}$ $\frac{20}{\sin 90} = \frac{h}{\sin 24}$	
24	20 × sin 24 or 8.1	M1dep	$\frac{20 \times \cos 66}{\sin 90} \times \sin 24$	
	[1215, 1221]	A1	with no incorrect working	g seen
	Add			
	150 × 20 × sin 24			M1M1

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 47.

2	200π	B1	
---	----------	----	--

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier 48.

	$\frac{4}{3}\pi(2x)^3$ or $\frac{1}{3}\pi(3x)^2h$	M1	oe	
	$\frac{4}{3}\pi(2x)^3 = \frac{1}{3}\pi(3x)^2h$ or $\frac{4}{3}\pi8x^3 = \frac{1}{3}\pi9x^2h$	M1dep	oe Sets up equation	
24	$32x = 9h$ or $x = \frac{9}{32}h$ or $h = \frac{32}{9}x$ or $\frac{32}{3}r = 9h$ or $r = \frac{27}{32}h$ or $h = \frac{32}{27}r$ or $27h = 32r$ or $\frac{27}{32}h:h$ or $3x:\frac{32}{9}x$ or $\frac{27}{32}:1$ or $3:\frac{32}{9}$	M1dep	oe linear equation or rati	io .
	or 0.84:1 or 3:3.55	**		
	27 : 32	A1		
		ditional G	Suidance	
	32 : 27			M1M1M1A0
	Note $\frac{4}{3}\pi(2)^3 = [33.49, 33.52]$ $\frac{1}{3}\pi(3)^2h = [9.42h, 9.43h]$			

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 49.

20	$0.25\pi^2(30 - 20)^2(30 + 20)$ or $0.25\pi^2 \times 10^2 \times 50$	M1	oe allow use of π as [3.14, 3.142]		
	[12 320, 12 340.21]	A1	may be implied		
	12 300 or 1.23 × 10 ⁴ with no value outside [12 320, 12 340.21] seen	A1			
	Additional Guidance				
	$0.25\pi^2(30-20)^2(30+20)$ 12 300			M1 A1(implied)A1	
	12 300 with no incorrect working			M1A1A1	
	12 300.0 is not to 3 significant figures				
	M1 gained followed by answer 12 300.0			M1A0A0	
	Do not allow misreads eg $0.25\pi^2(30 + 20)^2(30 + 20)$			M0A0A0	
	Brackets expanded correctly and values substituted			M1	

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 50.

	√64 and √343 or 4 and 7 or √[5.3, 5.4] or [1.74, 1.754411] or √[0.18, 0.19] or [0.56, 0.575]	M1	oe eg 4:7 or 7:4 or $\sqrt[3]{\frac{343}{64}}$ or $\frac{7}{4}$ or $\sqrt[3]{\frac{64}{343}}$ or $\frac{4}{7}$	
	their 4 ² and their 7 ² or 16 and 49 or their [1.74, 1.754411] ² or [3.02, 3.08] or their [0.56, 0.575] ² or [0.31, 0.331]		oe eg 16:49 or 49:16 or $\left(\text{their } \frac{7}{4}\right)^2$ or $\frac{49}{16}$ or $\left(\text{their } \frac{4}{7}\right)^2$ or $\frac{16}{49}$	
23	539 A1 Additional Guidance			
	4 ³ and 7 ³			M1
	$64^{\frac{2}{3}}$ and $343^{\frac{2}{3}}$			M1M1
	$\left(\frac{343}{64}\right)^{\frac{2}{3}}$ or $\left(\frac{64}{343}\right)^{\frac{2}{3}}$			M1M1
	Answer 539 with evidence of roundin			
	eg1 176 × 3.06 = 538.56 Answer 53 eg2 176 × 3.06 = 539 (may have ke	M1M1A0 M1M1A1		
	$\left(\sqrt{176} \times \frac{7}{4}\right)^2$			M1M1
	176 ÷ 16 = 11 and 11 × 49			M1M1
	4 and 7 (and/or 4 ² and 7 ²) but uses different method not involving 4 and 7			M1M0A0

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 51.

13	The diagonals are lines of symmetry The diagonals bisect each other The diagonals are perpendicular The diagonals are equal in length	F B1	
		Additional (Guidance

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 52.

17	Ticks No and gives correct reason or ticks No and gives numerical counter-example for any solid	eg2 (volume) sf = 2 ³ nd gives numerical eg3 if A and B are cubes and		
	Condone 8/3 No, as the height/width is (also) doubled/different No, as the length/volume is cubed No, volume is /3 No, as the height could be different No, it would be 3 times as big Doubling the length doesn't double the volume			B1 B1 B0 B0 B0 B0 B0

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier 53.

	Alternative method 1			
	$\frac{1}{3}$ (x) π (x) 5^2 (x) 15 or 125π or $[392.5, 392.8]$	M1	oe	
	$\frac{r}{5} = \frac{15 - 9}{15}$ or $r = 2$	M1	oe r is radius of small cone	
	$\frac{1}{3} \times \pi \times \text{their } 2^2 \times (15 - 9) \text{ or } 8\pi$ or [25.12, 25.14]	M1dep	dep on 2nd M1	
	117π	A1	Accept π 117 or $\frac{351\pi}{3}$	
	Alternative method 2			
28	$\frac{1}{3}$ (×) π (×) 5^2 (×) 15 or 125 π or [392.5, 392.8]	M1	oe	
	volume sf = $\left(\frac{15-9}{15}\right)^3$ or $\frac{8}{125}$ or $\left(\frac{15}{15-9}\right)^3$ or $\frac{125}{8}$	M1	oe	
	their $125\pi \times \text{their } \frac{8}{125}$ or their $125\pi + \text{their } \frac{125}{8}$ or 8π or $[25.12, 25.14]$	M1dep	dep on 2nd M1 Accept 1 $-\frac{8}{125}$ or $\frac{117}{125}$	
	117π	A1	Accept π 117 or $\frac{351\pi}{3}$	
	Additional Guidance			
	Allow [3.14, 3.142] for π for M marks only			
	Answer of 367.()			M1M1M1A0

AQA GSCE – Sample Paper 2 (Calculator) Higher Tier

	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 6^3$ or 144π	M1	oe eg [452, 452.45]
23	$\frac{2}{5} \times \text{their } 144\pi = \frac{1}{3} \times \pi \times x^2 \times 12$ or $57.6\pi = 4\pi x^2$	M1	oe eg [180.8, 181] = [12.5, 12.6] x^2 Must equate two volumes in terms of π
	$3 \times \frac{2}{5} \times \text{their } 144\pi \div 12\pi \text{ or }$ 14.4	M1dep	oe eg their [180.8, 181] ÷ their [12.5, 12.6] dep on 2nd M1 Correct working to isolate x^2
	[3.79, 3.8]	A1	